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AN APPROXIMATE INVERSION METHOD FOR FIVE POINT
DIFFERENCE MATRIX EQUATIONS

R. G. Steinke*
Los Alamos Scientific Laboratory

Energy Division
Los Alamos, New Mexico

An Approximate Inversion Method (AIM) has been developed for
solving two dimensional, five point difference matrix equations. The
method is a variation of the Crout-Cholesky forward elimination and
backward substitution method with operations on submatrix blocks rather
than individual elements. A submatrix collapsing approximation makes
the method efficient; applying familiar element operations on submatrix
blocks mnkes it simple. Global and line rebalance are used to define
an optimum relaxation parameter to accelerate convergence of the
iterativ~ algorithm.

AIM is compared with the Successive Line OverRelaxation (SLOR) and
Strongly Implicit Procedure (SIP) methods in a numerical study. These
methods were applied to solving the fluid dynamics and neutron
difFusion equations. AIM was found to be 1.3 to 2.5 times faster than
SIP and 1.8 to 5.4 times faster than SLOR. Rebalance relaxation en-
hanced AIM stability over that of the other methods.

---- -

*l~ork performefi under the auspices of the United States Department of
Energy and the Nuclc~r Regulatory (;ommi.ssion.



AN APPROXIMATE INVERSION METHOD
FOR FIVE POINT DIFFERENCE MATRIX EQUATIONS

INTROCULTION

SIMMEI?,l a best estimate computer program for LMFBR disrupted core
analysis, is being developed at the Los Alamos Scientific L~boratory. Recent
fllJid dynamics methods dlavelopment.for SIMMER was concerned with enhancing
numerical stability and reducing calculational effor+.. One such development
considered the evaluation of the pressure change and material density change
distributions during a time step. The spatially uncoupled approximate
solution to be iterated was replaced with ~ correct spatially coupled simul-
taneous solution. This resulted in decreased calculational effort per time
step as well as enhanced stability to allow much larger time steps to be
taken. This improvement was realized by formulating the correct five diago-
nal matrix equations in two dimensional rectilinear geometry and then solving
th~m with an efficierlt matrix inversion routine. Initially, the Successive
Line OverRelaxation (SL02)2J3 method was used to solve these matrix
equations. Instances of weakly diagonally dominant matrices requiring
hundreds OF SLOR iterations to invert them prompted Consideration of a more
efficient method.

A new Approximate Inversion Method (AIM) was felt to have this effi-
ciency. The method is a variation of the direct Crout-Cholesky forward
elimination and backward substitute method.2 Crout--Cholcsky method element
operations on a tridiagonal element matrix are applied in AIM as submatrix
block operations on a tridiagonal block matrix. To make the method ef-
ficient, a submatrix collapsing approximation is applied. Making this ap-
proximation requires that the method be iterative. A description of this
iterative algorithm and its approximate matrix itlversionfollows.

ITERATIVE ALGORITHM

The matrix equation to be so”

II ● ~“g
=

where

METHOD

ved is

(1)

M is a known five diagonal element i~reduciblc Mmatrix3 with tri-
= cliagonll submatrix blocks such that ~=&+ &+.lJ, ~ is a block

diagonal matrix with tridiagonal element submatr~ces and &ancllJ
arc adjacent lower and upper block diagonal matrices, respectiv~ly,
with diagonal clement subm~trices;



~ is a known vector; and

~ is an unknown vector to be determined.

To evall.latethe solution, AIM requires an n=O iteration initial c~timate of
~, FO. The error in g corresponding to the nth iteration estimate of ~ is

AQn=Q-M”Fn .— =-
(2)

The change in En needed to remove this error can be determined by solving
the matrix equation

M .AFn .L)Qn . (3)—=——

An approximate inversion of ~, however, gives ol~ly an approximate solution,

AFfI : (Mapproxim~~e)-l . AQn . (4)— = —

Because~Fn is approximate, combin”ng it with Fn defines only the next
iiteration estimate of ~, i.e., Fn+ . To accel~rate convergence of~n+l

to ~, a diagonal element relaxa~ion matrix~ is applied to AFn,—

FrI+l.Fn+w.~n .=

Three d~finitions of ~ have been considered:

1. - 1,
‘?.9. ‘“

no relaxation;

2. ‘1!2 = “ global rebalance relaxation; and

3. ‘u = ‘j’ line rebalance relaxation where j = 1 + (L-1)/I
and I is the number of nodes in a line.

The w and Wj rebalance parameters are defined t.ominimize the remaining
Euclidean norm error in ~.

n+l
Error = (NJ’’+l,~ )

(5)

(6)



Error is minimized with respect to w or Wj

~Error/aw”
i

= O for j=l,2. ..,J, respective’
mertt can e solved for w giving

by requiring dError/dw = O or
Y“ The dError/rJw = O require-

The ~Error/3wi = O requirement of J equations gives a five diagonal element
matrix equatibn with spatial coupling to the four nearest node- lines. This
mltri~ equatiun is solved for w“, j=l,2,. ..J, by forward elimination of the
two lower diagonals and backwar ~ substitution into the tw;omodified upper
diagonals. Having relaxed ~n+l by OIIeof the abovp definitions of & the
iterative evaluation continlJes until the convergence criterion —

(AQn+l, @’+l)
-’--(-mr- ‘ ‘ ‘.-

(7)

(8)

i~ satisfied for some small E.

MATRIXINVERSION

The block tridiagonal matrix ~=~+~+~ is inverted by forward eliminating
its lower block diagonal & and bac~ward sllhstituting into its modified upper
block cliagonal U*. The procedure for forward eliminating ~ involves step-
ping along the~=l,2 ,...J-l node lines ancleliminating the (j+l)th node line
submatrix ~j.~l. One starts by setting

and

(9)

(lo)

for the first node line. Then for $ach jth node line, starting with j = 1,
the t.ridi~gonal element submatrix ~ is directly inverted by the Cro~]t-
(;tl~)leskytorw~rclelimination and b~ckw~rd suhst’itution method. lJ~ becomes

(Q;)-1“gj,
‘J

_~n becomesa full element subrnatrix, and AQ

-1 ‘~”*n ❑ (D!) _-j ●~j “ AQ (11)

An elementwise collapsing approximation is now made on the full submatrix

(11’;)-l.~j ~ ROW elements to the left and right of the submatrix
d~’agonal element are cclll~psed (summed) to the adjacent left and rig~,t ele-
ments, respectivc?y,



(12)

(QJ)-loJ!j becomes the tridiagonal element submatrix ~+.

Thus far, our purpose has been to corvert the tridiagonal submatrix
~~ to an identity submatrix. ~j+l can now be eliminated from the

(j+l)th row submatrix equation by multiplying the modified jth row
submatrix equation by the dia onal eleme~t sdbmatrix ~+1 and then

?suhtr~cting it from the (j+l) h row equation giving

(13)

(14)

At this point, th~ reason for collapsing (~t)-l ● ~“ to the
tridiagonal element subu],:trix~~ becomes evident. The T$idiago!al
element form of 9+1 is maintalneo duri!g its modification to ~E1.
Without the collapsing approximation, Qj+l would be a full element
submatrix. Inverting gj+l in the next step can now be done efficiently
by the Crout-Cholesky method rather than by a full element submatrix
inversion.

After stepping forward with the above procedure for each j=l,2,. ..,l-l
line, the solution estimate in the Jth (last) node line is determined by

-1 tn
A_F; = (~) ●MJ “ (15)

At this point, ~has beep eliminated, IIhas become the identity matrix ~, and
~ has been modified to ~x having tricii~gonal element sl~bmatrix blocks. To
complete the solution, 17ackwards substitute into the ~ +JJ* upper triangular
matrix to determine

~F; = U;n - lJ;“AF~+l for j=J-l,J-2,. ,.,1 . (16)

The variable storage for AIM is approximately twice that of SLOR. The
origin!~l matrix equation must be saved to evaluate Equation (2) each iter-
ation. In addition, AQn, ~~ and U; for j=l,2, ..,J, ancl die line
rebal~nce matrix equamon must be=assigned storage. The 7*I*J storage
lociitions of the original matrix equati~n expand to 14*I*J -+7*J locations to
evall.~atethe solution. The fact thiitQj and~~ofor j=l,2,. ..J are
evaluated and saved in the first iteration eliminates th~ need to reevaluate
them in subsequent iterations. Only Equations (11) and (14)-(16) need to be
evaluated in subsequent iterations. This reduces the calculational effort
per iteration by 40%.



Applying AIM with no relaxation on a st?ongly coupled, weakly diagon-
ally dominant matrix equation can result in a divergent algorithm. T\qo
examples of this will be discussed in the numerical study section. This
occurs when the approximation of ~ during its inversion causes it to lose
diagonal dominance. Divergence can be prevented in two ways. The
approximation of ~ during its inversion can be constrained to maintain
diagonal dominance through further modification. Another way is to use
rebalance relaxation when AIM with no relaxation is found to diverge. This
latter approach is recommended bereuse divergence of AIM with no relaxation
occurs when U is weakly diagonally dominant, a situation where rebalance
relaxation would be more efficient, The stabilizing effect of rebalance
relaxation has been found to overritle~-ny instability due to modifying~
during its inversion.

NUMERICAL STUDY

FLUID DYNAMICS

This developmental effort has resulted illAIM and SLOR being programmed
in the SIMMER-II fluid dynamics algorithm. Their relative efficiency can now
be compared iiithis convenient framework. The transition phase and work
energy test problems in the SIMMER-II manuall were used for this
comparison. Can wall restraint on radial motion was removed in both problems
inorder to have two dimensional ~piitial coupling. Selecting these problems
was based on their a\lailability and small computing requirement. Their
coarse spatial mesh, however, means that both methods converge rapidly.
Problems with stronger spatial coupliilg would be of interest. A comparison
for such a problem will also be given.

The number of iterations and calculation times of AIM and SLOR were
monitored when evaluating the two test problems. SLOR required four times as
many iterations and twice the calculational effort of ATM with no relaxation
to solve the pressure change matrix equation. Equal computation times were
required fo~ the material density matrix equations because SLOR converged in
two iterations and AIM converged in one iteration. The SLOR solutions were
evaluated by beginning with no relaxation and then updating the relaxation
parameter every five iterations based on the last iteration error ratio.
Applying global and line rebalance relaxation in AIM increased calculational
effort per iteration by 20% and 30%, respectively. For these small t~st
problems, AIi4with no rebalance relaxation was more efficient. However, for
large problems with strong spatial coupling, the rebalance options would
become more efficient. This occurs when their ability to enhance convergence
and reduce the number of iterations overcomes their additional calculdtional
effort per iteration.

An example of how effective rebalance relaxation can be was obtained
from a realistic 16 by 31 mesh transition phase analysis problem4 run on
SIMMER-II. Liquid fuel was in the process of entering the coolant channel
with lwge local FCI pressure spikes occurring. The SIMMER-II run aborted
when the pressure change solution evaluated by AIM with no relaxation di-
verged. This was caused by the loss of diagonal dominance through modifying
M during its in’lersion. Restarting SIMMER-II using the SLORmethod resulted
in several hundred iterations to obtain a converged solution. Restarting
SIMMER-II using the AIM method with global rebalance relaxation, however,
required fewer than ten iterations to converge the pressure change solution.



NEUTRON DIFFUSION

It became of interest, after finding AIM to be faster than SLOR for the
fluid dynamics equations, to compare AIM with the Strongly Implicit Procedure
(SIP) method.5 The exi~tence of a few group, two dimensional neutron dif-
fusion eqdation program employ,ng the SIP method provided a convenient
framework for such a comparison. Making the comparison involved replacing
the SIP method subroutine in the diffusion program with the AIM and SLOR 5ub-
routir;es from SIMMER-II. The two energy group IAEA LWR benchmark problem’
and the four energy group SNR-300 LMFBR benchmark proble# were then evalu-
ated by the diffusion equation program using each method. The LWR quarter
core configuration was evaluated with a 44 by 44 mesh having a 4 cm mssh
size. The LMFBR quarter cure configuration WGS evaluated with a 34 by 34
mesh having a 2.7 cm mesh size. The methods were compared during outer
iteration 3 inorder to reduce the effect of the initial few group flux guess.

The convergence behavior of each method in each energy group of the LWR
problem is shown in Figures 1-2. Several SIP solutions with different
acceleration parameter values are shown. The optimally accelerated SIP
solution can be seen among them. The SLOR solution was evaluated with relax-
ation parameter updates every five iterations. AIM with no relaxation was
found to be the fastest method for this problem. For practical error re-
duction levels of two to six decades, AIM was faster than SIP by factors of
1.3 to 1.6 and faster than SLOR by factors of 1.8 to 3.0. In a comparison of
calc:~lational effort per iteration to that of AIM with no relaxation, SLOR
required 41% less, SIP required 22% more, AIM with global rebalance required
32% more, ~nd AIM with line rebalance required 30% more. The comparison nf
AIM imd SLOR in this problem is similar t(:what was observed in the fluid
dynamics test problems.

The convergence behavior of each method in each energy group of the
LFIFBRproblem is shown in Figures 3-6. Calculations similar to those in the
LWR problem were performed. Because of stronger spatial coupling in this
problem, the convergence rate of AIM with no relaxation deteriorated relative
to the other methods. The possibility for divergence, spoken of earlier, is
seen to occur in energy group 2. !iote, however, that during the first few
iterations AIM with no relaxation converged as fast as the best method, AIM
with global or line rebalance relaxation. For practical error reduction
levels of two to six decades, AIM with rebalance relaxation was found to be
faster than optimum SIP by factors o: 1.4 to 2.5 and faster than SLOR by
fact~lrs u: 3.0 tu 5.4. In a comparison OF calculationdl effort per iteration
to that of AIM with no relaxation, SI.ORrequired 44% less, SIP required 31%
more, AIM with global rebalance required 29% more, and AIM with line

rebi]l~.ncerequired 35% more.

~~ Sho(lld be ~er-rtionecl that SIP exp~~ienr-ed several ir~st~nces of con-
vergence to error reduction levels of 10-3 to 10-5 followed by subsequent
oscillation about that level. This occurred in cmter iterations ?.and 2 for
acceleration parameters greater than 0.9. For these same acceleration paiam-
eter values, an oscillating convergence rate can be seen in Figures 5-6 for
energy groups 3 and 4 in outer iteration 3.



CONCLUSIONS

A new Approximate Inversion Method (AIM) has been developed for solving
two dimensional, five point difference matrix equations. Familiar Crout-
Cholesky method element operations applied to submatrix blocks makes the
metkod simple. A submatrix collapsing approxim~tion and iterative
acceleration by rebalance relaxation make the method efficient.

A numerical study comparing AIM to the Successive Line OverRelaxation
(SLOR) and Strongly Implicit Procedure (SIP) methods has shown AIM to be su-
perior. This comparison was made by solving the fluid dynamics and neutron
diffusion equ~tions. AIM with no relaxation acceleration was fastest for
problems with weak spatial coupling. On the other hand, AIM with global or
line rebalance relaxation was fastest for problems with strong spatial
coupling. The best strategy for AIM appears to b~ the use of no relaxation
during the initial iterations and then switching to rebalance relaxation when
the convergence r~he with no relaxation starts to deteriorate.

The efficiency of SIP could be improved to the level of AIM for problems
with strong spiitial coupling by applying global or line rebalance relaxation
in SIF. To achieve this level of efficiency, h~wever, requires that a gu~ii
estimate for the SIP acceleration parameter be known apriori. ‘Too large a
value causes oscillations; too small a value slows convergence. Not having to
select such cn acceleration Darameter makes AIM a more attractive method.
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Figure 1. Error Versus ‘lime for the LWR Problem, Energy Group 1
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Figure 2. Error Versus Time for the LWR Problem, Energy Group 2
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Figure 3. Error Versus Time for the LMFER Problem, Enc gy Group 1
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Figure 4. Error Ver~us Time for the LMFBR Problem, Energy Group 2
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Figure 5. Error Versus Time for the LMFBR Problem, Energy Group 3
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Figure 6. Error Versus Time for the LIIIFBRProblem, Energy Group 4
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